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A NOTE ON HOMOGENEOUS PROCESSES WITH INDEPENDENT INCREMENTS

Y. H. WANG

The Ohio State University

1. INTRODUCTION,

Let X(t), t > 0, be a homoreneous stochastic process with
independent increments, Fix ty > 0. Then, given X(tl) =y,
the process X(t), for 0 <t < tl, is called a tied-down process
with end point equals y. Suppose X(t) is a Poisson process,
then the conditional distribution of X(t) given X(tl) =y, for
all 0 < t < t;, is binomial with parameter (v, t/tl), and therefore
‘the conditional expectation and variance of X(t) given X(tl) =y
atre linear functions of y. Suppose X(t) is a Wiener process,
then the conditional distribution of X(t) given X(tl) =y, for all
0<t<ty, is normal with parameter ((t/tl)y, ozt(l - t/tl)), and
hence the conditional expectation of X(t) given X(ﬁl) =y is a
linear funetion of y and the conditional variance does not depend
upon Y.

In this note, we shall characterize a class of stochastic
processes based on the property that the conditional mean and variance
of X(t), given X(tl) =y, for some 0< t < tl, are linear functions of
v. Tt will be proved that if E(X(t) | X(tl) =y) = ay * @, v, then
1) Var(x(t) | X(t;) = ¥) = constant n.e, if and only if X(t) =

Ww(t) + ut, where W(t) 48 a Wiener process and u 18 a real constant,
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S Var(x(t) | X(t)) = ¥) =pgy+ 6,v (Ry £ 0) if and only if

0 3

X{(tY = cY(t) - Vvt, where Y(t) is a Poisson process and V and ¢ are
renl constants, To avoid trivial cases, we shall assume that X(t)
13 not a derenerate process, Also all stochastic processes X(t),

t > 0, consldered in this note are assumed to be homogeneous,
second-order and with irdependent increments,

For a recent survey of the results on characterizatiorns of

stochastic processes see the paver [1] by Lukacs.

2, THE RESULT,

We need the Tollowing two lemmas.
TRMA ), If EB(X(t) | X(t)) =y) =y + av, then a =0
ad o) =t/t), forall 0<t<t, <=

PRCOF, Since X(t) 1is a homoreneous, second-order process

vith independent increments, it follows that .(t) = E(X(t)) = ut,

n?(t) = Var{X(t)) = oet, for all t > 0, and P(tly t2) =
Corr. Coeff. (X(t;), X(t,)) = min(t,, t2§/ﬁ'l t,, for all t, >0
o]
and t, > 0, where u = E(X(1)) and ¢~ = var(X(1)).
Therefore
’ ( =

al = p(t, t]—‘ U\t)/o(tl) = t/tl!
and

oy = a{t) - alu(tl) = 0.

LZMA 2. Let a(s, t) = E(eisx(t)\ be the characterictic

function of X(t) and z(s)

(s, 1). Then

oo ot i | s e e e




p t, -1
. !
E(X(to)eisx‘tl)) = - it Y (e) &' (a)
And
i B (e et X (t))y e (- 1) t -2 Ve a2
Q [ i 0 e E - 0 0 - 8 \8 (g \a))
tl -1 n
- bR (8) & (8,
| | for all 0<t,<t, and real s,

i 0

I PROOF. Because X(t) 18 a homopgeneous, second-order process
with independent increments, g(s, t) = gt(s) and the second pestial
derivative of (s, t) w.r.t, 8 exists for all t and 8, It

then follows that

EX(6)e ™)) w L g < ey @’ (a)

;
E
|
|
— and
! : E(XQ(t)eisX(t)) -

-t - g T 2(e) (e (8))P

t -1 "
-tag (s) & (8),
for all real s and ¢ > O,

Then Lemma 2 follows from the fact that

O)eisx(t isX{t

E(Xk(t 1)) = E(Xk(to)e o)) g(s, t, - t)

0

for all k%, 0<t < t, and real s.

(0] 1

We now state and prove the main recult of this note, For more
detail of the proof, especially the last part, see the proof of

theorem 2.1 in [2] by this author.

THEORREM, Let 0O < to < tl. Then the necessary and sufficient

condition that
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E(X(ty) | X(ty) = ¥) =ay + ayy

Var(x(to) | X(tl) =y) =p.+ 3.y a.e.,

0 1l

%» By and f, are consvants w.r.t. y, 1is :nat

= W(t) + ut, if fy, =0, where W(t) 4is a Wien: process

>
=
i =
)
»

a real constant,

n
—
-
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eY(t) - vt, if 8, # 0, where Y(t) is a Poisson process

and VvV and ¢ are real constants,

PROOF. The sufficient condition can be verified by a streight-

forward calculation,
To prove the necessary condition. Suppose the conditions (1)

and (2) hold. Then by lemma 1, the conditions (1) and (2) imply
2 18X(t,) 2 2 i1sX(t.)
(3) E(X &Oh 1) -(%/H)Eﬂ &ﬁe 1)
t i
= BOE(eisx( 1)) + BlE(X(tl)e sX(tp)

for all real s,

By lemma 2, equation (3) is equivalent to

Sty -2 t,o-1 o, -
M) -ttt () (N - gt (e) & ()
t, -1,

= 36(s) - 1A toe (s) & (s),

for all resal s,
Without loss of genzrality, we may assume thet g(s) f 0 for 8sll s.

And we rewrite equation (4) in the form

(5) Lo (8)/a(e)) = - 3y + 13(# (a)/a(s)),




Y = - g = -
where B no/(to(l to/tl)) and By nltl/(to(l to/tl)).
Recause the second derivative of ¢(s) exists and doeg not vanish

’
rfor the s 1in a neighborhood N of the oripin and g (s)/g(s)

is independent of to and tl, B0 and Bl are independent of to and t

In eddition, it is easy to check that if Bl = Q, then B

10

o > 0.

The solution of equation (4) is, if By = 0,

e exad _1 22)
gls) = expy ius 508 j.

where u is a real sonctant and 02 = B0 > 0, and if Bl f 0,

-

g(8) = exp { - ivs + A(el®S - l)},

where A 1s a positive real constant independent of t and 8, and

v = EO/BI’ ¢ = Bl.

Therefore, the characteristic function of X(t) is, if By = 0,
g(s,t) = exp { iuts - %oets2 },

and, if Bl = 0,
(s, t) = exp {- ivts + kt(eics -1) }.

This completes our proof of the theorem,

The following two corollaries of the theorem are cnaracterizations

of the Wiener and the Poisson processes.

COROLLARY 1, If E(X(t)) = O for some t > 0, Then the necessary

and sufficient condition that X(t) is a Wiener process is that




e

6

E(X(t03 l X(tl) = y) 1is a linear function of y and Var(x(to) | x(tl) = y)

is constant a.e, for some O < to < tl. é

1s constant for some i
El

COROLLARY 2. The necessary and sufficient condition that X(t) :

is a Poisson process is that E(X(to) | X(t,) = y) is a linear function 3

of v nand Vaf(x(to) | X(tl) =y) = (to/tl)(l - to/tl)y a.e, for some ;

0<t0<tl.

This work was partially sponsored by U.S. Air Force Office of
Scientific Research A™-AFOSR-1305-67.
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